Estrógeno unido al tejido en el envejecimiento
La industria del “Reemplazo de Estrógeno” está basada en la doctrina de que los tejidos de la mujer están desplegados de estrógeno luego de la menopausia. Esta doctrina es falsa.
La
concentración de una hormona en sangre no representa directamente la
concentración en varios órganos.
La
cantidad de estrógeno en tejidos disminuye cuando la progesterona es
abundante. En ausencia de progesterona, los tejidos retienen
estrógeno incluso cuando hay poco circulando en sangre.
Muchas
cosas sugieren un incremento de la actividad estrogénica luego de la
menopausia. Por ejemplo, la melatonina disminuye significativamente
en la pubertad cuando el estrógeno aumenta, y de nuevo disminuye en
la menopausia. La prolactina (estimulada por el estrógeno) aumenta
alrededor de la pubertad, y en lugar de disminuir en la menopausia, a
menudo aumenta, y su incremento está asociado con la osteoporosis y
otros síntomas relacionados con el envejecimiento.
El
estrógeno es producido en muchos tejidos por la enzima aromatasa,
incluso en el seno y endometrio, aunque estos son considerados
“tejidos objetivo” en lugar de glándulas endocrinas. La
aromatasa incrementa con la edad.
El
estrógeno es desactivado, principalmente en hígado y cerebro,
haciéndolo soluble en agua acoplándole ácido glucurónico y/o
ácido sulfúrico.
La
concentración del estrógeno en un tejido en particular depende de
muchas cosas, incluyendo su afinidad o fuerza de unión para
componentes de ese tejido, relativa a la afinidad de la sangre; la
actividad en ese tejido de la enzima aromatasa, que convierte
andrógenos en estrógeno, la actividad de la enzima glucuronidasa ,
que convierte glucurónidos de estrógenos solubles en agua en formas
activas de estrógeno solubles en aceite; y las sulfatasas y varias
otras enzimas que modifican la actividad y solubilidad de los
estrógenos. Los “receptores estrogénicos”, proteínas que se
acoplan con estrógeno en las células, son desactivados por la
progesterona, y activado por muchas condiciones físicas y químicas.
La
inflamación activa la beta-glucuronidasa, y sustancias
anti-inflamatorias como la aspirina reducen muchos de los efectos del
estrógeno.
Las
doctrinas son admitidas en el “canon científico” por aquellos
que tienen el poder de censura. En la astronomía, el descubrimiento
de Halton Arp de cambios rojos galácticos “anómalos” es
prácticamente desconocido, porque los editores de la revista dijeron
que las observaciones eran “sólo anomalías”, o que las teorías
que podrían explicarlo son poco convencionales; pero el problema
real es que son una gran evidencia contra el Big Bang, La Ley de
Hubble, y el Universo en Expansión. La ciencia estadounidense, desde
los 40, ha probado ser la más censurada y doctrinaria del mundo.
La
revolución de Gilbert Ling en la biología celular permanece fuera
del canon, a pesar de profundas influencias de las Imagenología con
Resonadores Magnéticos, que creció a partir de su punto de vista de
la célula, debido a que su trabajo proveyó evidencia conclusiva de
que las células no son reguladas por “membranas semipermeables y
bombas de membrana.” Cada campo de la ciencia es dominado por un
establishment doctrinario.
Charles
E. Brown-Séquard (1.817-1.894) era un fisiólogo que fue pionero en
endocrionología científica, pero que fue ridiculizado por asegurar
que extractos de glándulas animales tenían un efecto vigorizante
cuando eran inyectadas. Su lugar en el canon científico es
principalmente un objeto de ridículo, y los detalles de su caso son
perfectamente representativos de la manera en que nuestro “canon”
se ha construido. La razón de descartar sus observaciones fue que
usó un extracto en agua de testículos, y, de acuerdo a los biólogos
estadounidenses del siglo XX, la testosterona no es soluble en agua,
y, si el extracto en agua “No habría tenido ninguna hormona”. El
argumento es tonto, porque los órganos vivos tienen innumerables
sustancias que solubilizan moléculas aceitosas, pero también porque
Brown-Séquard estaba describiendo un efecto que no estaba
necesariamente limitado a una sola sustancia química. (El
transplante de células vivas para reparar tejidos es finalmente
aceptado, pero los pioneros en promover la regeneración o reparación
de tejido con el transplante de células vivas, muertas o
estresadas—V. Filatov, L.V. Polezhaev, W.T. Summerlin, por ejemplo,
fueron simplemente sacados de la historia.)
Si
el extracto de Brown-Séquard no podía funcionar porque la
testosterona no era soluble en agua, entonces qué deberíamos pensar
de miles de publicaciones médicas que hablan de “hormonas libres”
como las únicas hormonas activas? (“Hormona libre” es definido
como la hormona que no está unida a una proteína de transporte, con
la más o menos explícita idea de que está disuelta en agua del
plasma o fluido extra-celular.) El extracto de tejido de
Brown-Séquard habría contenido sustancias solubilizantes incluyendo
proteínas y fosfolípidos, así las hormonas aceitosas estarían
ciertamente presentes (y activas) en sus extractos. Pero los miles
que le ridiculizaron se comprometieron con el hecho de que las
hormonas esteroides son insolubles en agua. Por su propia lógica,
están vendiendo la imposibilidad cuando hacen cálculos para revelar
el monto real de “hormona libre”, como algo distinto de hormona
unida a proteína, en la sangre del paciente.
La
inmensa industria de la Terapia de Reemplazo Hormonal —que
presagiaron los experimentos de Brown-Séquard— está basada en le
hecho de que la concentración de algunas hormonas en el serum
sanguíneo disminuye con el envejecimiento.
Al
principio, era asumido que la cantidad de hormona en la sangre
correspondía con la efectividad de esa hormona. Lo que sea que
hubiera en la sangre estaba siendo entregado a “tejidos objetivo”.
Pero la idea de medir la “iodina acoplada a proteína” (PBI) para
determinar la función de la tiroides cayó en descrédito (porque
nunca tuvo basamento científico alguno), nuevas ideas de medir
“hormonas activas” entraron al mercado, y actualmente la doctrina
es que las hormonas “unidas” son inactivas, y las activas son las
“libres”. Se supone que las hormonas “libes” son las únicas
que pueden entrar a las células para entregar sus señales, pero el
problema es que las “hormonas libres” sólo existen en la
imaginación de gente que interpreta ciertos resultados de
laboratorio, como discutí en un boletín informativo acerca de
pruebas tiroides (Mayo, 2.000).
En
los 60 y 70, cuando el PBI estaba en desaparición, hubo un interés
intenso en —una especie de manía con ello— el rol de las
“membranas” en regular las funciones celulares, y la membrana
todavía estaba siendo vista por la mayoría de los biólogos como la
“membrana semipermeable” que, “obviamente”, excluiría
moléculas tan grandes como la albúmina y otras proteínas que
transportan tiroides y otras hormonas en la sangre. (En realidad, y
observaciones experimentales, la albúmina y otras proteínas entran
a las células más o menos libremente, dependiendo de condiciones
prevalecientes). La doctrina de la membrana llevó
directamente a la doctrina de la “hormona libre”.
Este
asunto, de discutir acerca de cual forma de una hormona es la forma
“activa”, tiene que ver con explicar cuánto de la hormona
transportada en sangre va a alcanzar los “tejidos objetivos”. Si
la barrera de membrana es “semipermeable” a moléculas como
hormonas, entonces receptores específicos y transportadores van a
hacer falta. Si la concentración de una hormona dentro de una célula
es más alta que en la sangre, una “bomba” normalmente va a ser
invocada, para producir un “transporte activo” de la hormona
contra el gradiente de concentración.
Pero
si la membrana regula el paso de hormonas desde la sangre al tejido
celular, y especialmente si son necesarias bombas para mover la
hormona dentro de la célula, ¿cuán relevante es medir la cantidad
de hormonas en sangre?
En
la sangre, la progesterona y la hormona tiroides (T3) están mucho
más concentradas en los glóbulos rojos que en el serum. Debido a
que no es común que los glóbulos rojos sean “objetivos” de
hormonas sexuales, o de progesterona o incluso tiroides, su
concentración “contra su gradiente” en estas células sugiere
que una simple distribución por solubilidad está implicada. Las
sustancias grasas naturalmente tienden a concentrarse en el interior
de las células por su insolubilidad en el entorno acuoso del plasma
y fluido extracelular. Las proteínas que tienen regiones “aceitosas”
efectivamente se acoplan sólo a moléculas aceitosas, como grasas y
esteroides. Incluso los glóbulos rojos tienen tales proteínas.
En
el caso de moléculas solubles en aceite, como la progesterona y el
estrógeno, es importante para explicar que la mayoría de sus
“uniones” a proteínas u otras moléculas amantes del aceite es
realmente la casi pasiva consecuencia de moléculas siendo forzadas a
alejarse de la etapa acuosa — son hidrofóbicas, y a pesar de que
tomaría una gran cantidad de energía hacer que estas sustancias
insolubles entraran en la etapa acuosa, la fuerza de atracción entre
ellas y la célula es normalmente baja. Esto quiere decir que pueden
ser libres de moverse, mientras estén “unidas” o concentradas
dentro de la célula. Los átomos de oxígeno, y especialmente el
grupo fenólico del estrógeno, ligeramente reducen la afinidad de
las hormonas por aceites simples, pero interactúan con otros grupos
polares o aromáticos, dando la habilidad al estrógeno para
acoplarse más fuerte y específicamente con algunas proteínas y
otras moléculas. Encimas que canalizan las acciones
oxidación-reducción del estrógeno están entre las proteínas
específicas de acople del estrógeno.
Muchas
proteínas y lipoproteínas acoplan esteroides, pero algunas
proteínas intracelulares se acoplan a estos tan fuerte que han sido
—a manera muy teleológica, si no antropomórfica — considerada
como el switch por el cuál la hormona enciende la respuesta celular.
En la doctrina popular del Receptor de Estrógeno, unas pocas
moléculas de estrógeno se acoplan a los receptores, que las
transportan al núcleo de la célula, donde los receptores activados
encienden los genes a cargo de la respuesta femenina. (O la respuesta
masculina, o respuesta de crecimiento, o la respuesta de atrofia, o
lo que sea de respuesta genética que el estrógeno esté
produciendo.) Una vez que el switch ha sido pasado, las moléculas de
estrógeno han cumplido su deber hormonal, y deben perderse, así que
la respuesta no es perpetuada indefinidamente por unas pocas
moléculas.
A
pesar de que la doctrina del Receptor de Estrógeno es más que
tonta, hay proteínas reales que se acoplan al estrógeno, y algunas
de estas son llamadas receptores. El útero, seno, y cerebro, que son
bastante sensibles al estrógeno, unen, o concentran, moléculas de
estrógeno.
Cuando
estaba trabajando en mi disertación, intenté extraer estrógenos
del útero de un hamster, pero las técnicas químicas que usaba para
medir estrógeno no eran precisas para tan pequeñas cantidades. Unos
pocos años luego, S. Batra fue capaz de extraer el estrógeno del
tejido humano en cantidades suficientemente grandes para un análisis
preciso por radioinmunoensayo. (Batra, 1976.)
Su
observación crucial fue que las diferencias en la concentración de
estrógeno entre tejido y sangre era más baja en la fase luteal,
cuando la progesterona era alta:
“La
relación tejido/plasma para el E2 [estradiol] varió entre 1,45 a
20,36 con valores muy altos en la fase folicular temprana y los más
bajos en la mitad de la fase luteal.” Esto
quiere decir que la progesterona previene que el tejido concentre
estrógeno. Hizo unas observaciones similares durante el embarazo,
con
el estrógeno en tejido disminuyendo a medida que la progesterona
aumentaba, así habiendo menos estrógeno en tejido que en plasma.
Pero
las mujeres que no están embarazadas, y cuando su progesterona está
baja, el tejido puede contener 20 a 30 veces más estrógeno que el
plasma (en igual volumen).
Durante
el envejecimiento, la marcada reducción de la producción de
progesterona crea una situación que recrea la fase folicular del
ciclo menstrual, permitiendo que los tejidos concentren estrógeno
incluso cuando el estrógeno en serum podría estar bajo.
“En
mujeres postmenopáusicas, la concentración en tejido del E2 no era
significativamente más baja que en mujeres menstruando en fase
folicular...” (Akerlund, et al., 1981.)
A
pesar de las relativamente directas acciones de la progesterona en
los receptores de estrógeno, mantener su concentración baja, y su
acción inderecta previniendo que la prolactina estimule la
formación de receptores estrogénicos, hay muchos otros procesos que
pueden aumentar o disminuir la concentración en tejido del
estrógeno, y muchas otras influencias cambian con la edad.
Hay
dos tipos de enzimas que producen estrógeno. La aromatasa convierte
hormonas masculinas a estrógenos. La beta-glucuronidasa convierte
los inactivos glucuronidos de estrógeno en estrógeno activo. El
hígado sano desactiva prácticamente todo el estrógeno que le
alcanza, principalmente combinándolo con “ácido de azúcar”,
ácido glucurónico. Esto hace que el estrógeno se torne soluble en
agua, y es rápidamente eliminado a través de la orina. Pero cuando
pasa a través de tejido infamado, estos tejidos contienen grandes
cantidades de beta-glucuronidasa, que removerá el ácido
glucurónico, dejando que el estrógeno puro se acumule en el tejido.
Muchos
tipos de transtornos del hígado disminuyen su habilidad de excretar
estrógeno, y este contribuye a una variedad de enfermedades del
hígado. El trabajo de Biskinds en los años 40 mostró que la
deficiencia protéica en la dieta impedía al hígado desintoxicar
estrógeno. El hipotiroidismo impide que el hígado acople ácido
glucurónico al estrógeno, así aumenta la retención del cuerpo de
estrógeno, que a su vez altera la habilidad de la tiroides de
segregar hormona tiroidea. El hipotiroidismo a menudo resutla de
deficiencia nutricional de proteína.
A
pesar de que comúnmente pensamos que los ovarios son la mayor fuente
de estrógeno, la enzima que lo hace puede ser encontrada en todas
las partes del cuerpo. Sorpresivamente en macacos
Rhesus, la aromatasa en los brazos forma parte enorme de la
producción de estrógeno. La grasa y la piel son las mayores fuentes
de estrógeno, especialmente en gente anciana. La
actividad de la aromatasa incrementa con la edad, y bajo la
influencia de la prolactina, el cortisol, la prostaglandina, y las
hormonas pituitarias, FSH (hormona folículo estimulante) y la
hormona de crecimiento. Es inhibido por la progesterona, tiroides,
aspirina y altitud elevada.
La
aromatasa puede producir estrógeno en células grasas, fibroblastos,
células de músculo liso, tejido mamario y uterino, páncreas,
hígado, cerebro, hueso, piel, etc. Su acción en el cáncer de seno,
endometriosis, cáncer uterino, lupus, ginecomastia, y muchas otras
enfermedades es especialmente importante. La aromatasa en tejido
mamario parece incrementar los receptores de estrógeno y causar
neoplasia en el seno, independientemente del estrógeno ovárico
(Tekmal, et al., 1999).
A
mujeres le han sido retirados los ovarios y usualmente les dicen que
necesitan tomar estrógeno, pero experimentos animales
consistentemente muestran que remover las gónadas causa que la
aromatasa en tejido aumente. La pérdida de progesterona y andrógenos
del ovario es probablemente responsable del incremento generalizado
en la formación de estrógeno. En el cerebro, la aromatasa aumenta
bajo la influencia del tratamiento de estrógeno.
La
sulfatasa es otra enzima que libera estrógeno en tejidos, y su
actividad es inhibida por hormonas antiestrogénicas.
En
al menos algunos tejidos, la progesterona inhibe la liberación o
activación de la beta-glucuronidasa (que, de acuerdo a Cristofalo y
Kabakjian, 1.975, aumenta con la edad). El ácido glucárico, que
inhibe esta enzima, está siendo usado para tratar cáncer de seno,
el ácido glucurónico también tiene a inhibir la liberación
celular de estrógeno por la beta-glucuronidasa.
A
pesar de que hay claramente una tendencia hacia el uso racional de
tratamientos anti-estrogénicos para el cáncer de seno, en otras
enfermedades el mito de la deficiencia de estrógeno sigue impidiendo
incluso enfoques rudimentarios.
Desde
el trabajo de Lipshutz en los 40, se ha establezido que el efecto
ininterrumpido de un poco de estrógeno es más dañino que más
grandes pero intermitentes exposiciones. Pero luego de la menopausia,
cuando la progesterona comienza su desplazamiento cíclico por el
estrógeno en tejidos, los tejidos retienne grandes cantidades de
estrógeno continuamente.
La
menopausia en sí misma es producida por la prolongada exposición al
estrógeno en la pubertad, a pesar de la protección mensual de la
progesterona producida cíclicamente por ovarios. La acción sin
oposición de altas concentraciones de estrógeno acoplado a tejido
luego de la menopausia debe ser aún más dañina.
El
detrimento de los factores anti-estrogénicos en el envejecimiento,
combinado con el aumento de factores pro-estrogénicos como el
cortisol, la prolactina y FSH, ocurre tanto en hombres como mujeres.
Durante los años reproductivos, la producción cíclica de grandes
cantidades de progesterona probablemente retrasa su envejecimiento
suficiente para contar por su más larga longevidad. La maternidad
también tiene un residual efecto anti-estrogénico y está asociado
con longevidad mayor.
Estar
al tanto de este incremento generalizado en la exposición al
estrógeno con el envejecimiento debe hacer posible dirigir una serie
de métodos amplios para oponerse a las tendencias de la
degeneración.
REFERENCES
Contraception
1981 Apr;23(4):447-55. Comparison
of plasma and myometrial tissue concentrations of estradiol-17 beta
and progesterone in nonpregnant women.
Akerlund M, Batra S, Helm G Plasma and myometrial tissue
concentrations of estradiol (E2) and progesterone (P) were measured
by radioimmunoassay techniques in samples obtained from women with
regular menstrual cycles and from women in pre- or
postmenopausal age.
In women with regular cycles, the tissue concentration of E2 ranged
from 0.13 to 1.06 ng/g wet weight, with significantly higher levels
around ovulation than in follicular or luteal phases of the cycle.
The tissue concentration of P ranged from 2.06 to 14.85 ng/g wet
weight with significantly higher level in luteal phase than in
follicular phase. The tissue/plasma ratio of E2 ranged from 1.45
to 20.36 with very high values in early follicular phase and the
lowest in mid-luteal phase.
The ratio for P ranged from 0.54 to 23.7 and was significantly lower
in the luteal phase than in other phases of the cycle. One woman in
premenopausal age with an ovarian cyst was the only case with
a tissue/plasma ratio of E2 Less Than 1, since her plasma E2 levels
were exceptionally high. In postmenopausal women, the tissue
concentration of E2 was not significantly lower than in menstruating
women in follicular phase, and the tissue concentration of P was not
significantly lower than in fertile women in any of the phases.
Neither in these women nor in menstruating women was there a
close correlation between tissue and plasma levels. The
present data indicate that the myometrial uptake capacity for ovarian
steroids may be saturated, and
also that a certain amount of these steroids is bound to tissue even
if plasma levels are low.
Biokhimiia
1984 Aug;49(8):1350-6. [The
nature of thyroid hormone receptors. Translocation of thyroid
hormones through plasma membranes].
Azimova ShS, Umarova GD, Petrova OS, Tukhtaev KR, Abdukarimov A
The in vivo translocation of thyroxine-binding blood serum prealbumin
(TBPA) was studied. It was found that the TBPA-hormone complex
penetrates-through the plasma membrane into the cytoplasm of target
cells. Electron microscopic autoradiography revealed that blood serum
TBPA is localized in ribosomes of target cells as well as in
mitochondria, lipid droplets and Golgi complex. Negligible amounts of
the translocated TBPA is localized in lysosomes of the cells
insensitive to thyroid hormones
(spleen macrophages). Study of T4- and T3-binding proteins from rat
liver cytoplasm demonstrated that one of them has the antigenic
determinants common with those of TBPA. It was shown
autoimmunoradiographically that the structure of TBPA is not altered
during its translocation.
Biokhimiia
1985 Nov;50(11):1926-32.
[The nature of thyroid hormone receptors. Intracellular functions of
thyroxine-binding prealbumin]
Azimova ShS; Normatov K; Umarova GD; Kalontarov AI; Makhmudova AA The
effect of tyroxin-binding prealbumin (TBPA) of blood serum on the
template activity of chromatin was studied. It was found that the
values of binding constants of TBPA for T3 and T4 are 2 X 10(-11) M
and 5 X 10(-10) M, respectively. The receptors isolated from 0.4 M
KCl extract of
chromatin and mitochondria as well as hormone-bound TBPA cause
similar effects
on the template activity of chromatin. Based on experimental results
and the previously published comparative data on the structure of
TBPA, nuclear, cytoplasmic and mitochondrial receptors of thyroid
hormones as well as on translocation
across the plasma membrane and intracellular transport of TBPA, a
conclusion was drawn, which suggested that TBPA is the "core"
of the true thyroid hormone receptor. It was shown that T3-bound TBPA
caused histone H1-dependent conformational changes in chromatin.
Based on the studies with the interaction of the TBPA-T3 complex with
spin-labeled chromatin, a scheme of functioning of the thyroid
hormone nuclear receptor was proposed.
Biokhimiia
1984 Sep;49(9):1478-85[The
nature of thyroid hormone receptors. Thyroxine- and
triiodothyronine-binding proteins of mitochondria]
Azimova ShS; Umarova GD; Petrova OS; Tukhtaev KR; Abdukarimov A. T4-
and T3-binding proteins of rat liver were studied. It was found that
the external mitochondrial membranes and matrix contain a protein
whose electrophoretic mobility is similar to that of
thyroxine-binding blood serum prealbumin (TBPA) and which binds
either T4 or T3. This protein is precipitated by monospecific
antibodies against TBPA. The internal mitochondrial membrane has two
proteins able to bind thyroid hormones, one of which is localized in
the cathode part of the gel and binds only T3, while the second one
capable of binding T4 rather than T3 and possessing the
electrophoretic mobility similar to that of TBPA.
Radioimmunoprecipitation with monospecific antibodies against TBPA
revealed that this protein also the antigenic determinants common
with those of TBPA. The in vivo translocation of 125I-TBPA into
submitochondrial fractions was studied. The analysis of densitograms
of submitochondrial protein fraction showed that both TBPA and
hormones are localized in the
same protein fractions. Electron microscopic autoradiography
demonstrated that 125I-TBPA enters the cytoplasm through the external
membrane and is localized on the internal mitochondrial membrane and
matrix.
Biokhimiia
1984 Aug;49(8):1350-6.
[The nature of thyroid hormone receptors. Translocation of thyroid
hormones through plasma membranes]
Azimova ShS; Umarova GD; Petrova OS; Tukhtaev KR; Abdukarimov A The
in vivo translocation of thyroxine-binding blood serum prealbumin
(TBPA) was studied. It was found that the TBPA-hormone complex
penetrates-through the plasma membrane into the cytoplasm of target
cells. Electron microscopic autoradiography revealed that blood serum
TBPA is localized in ribosomes of target cells as well as in
mitochondria, lipid droplets and Golgi complex. Negligible amounts of
the translocated TBPA is localized in lysosomes of the cells
insensitive to thyroid hormones (spleen macrophages). Study of T4-
and T3-binding proteins from rat liver cytoplasm demonstrated that
one of them has the antigenic determinants common with those of TBPA.
It was shown autoimmunoradiographically that the structure of TBPA is
not altered during its translocation.
Probl
Endokrinol (Mosk), 1981 Mar-Apr, 27:2, 48-52.
[Blood estradiol level and G2-chalone content in the vaginal mucosa
in rats of different ages]
Anisimov VN; Okulov VB. “17
beta-Estradiol level was higher in the blood serum of rats aged 14 to
16 months with regular estral cycles during all the phases as
compared to that in 3- to 4-month-old female rats. The
latter ones had a higher vaginal mucosa G2-chalone concentration. The
level of the vaginal mucosa G2-chalone decreased in young rats 12
hours after subcutaneous benzoate-estradiol injection.
. . .”.
“Possible role of age-associated disturbances of the regulatory
cell proliferation stimulant (estrogen) and its inhibitor (chalone)
interactions in neoplastic target tissue transformation is
discussed.”
Clin
Endocrinol (Oxf) 1979 Dec;11(6):603-10. Interrelations
between plasma and tissue concentrations of 17 beta-oestradiol and
progesterone during human pregnancy.
Batra S, Bengtsson LP, Sjoberg NO Oestradiol and progesterone
concentration in plasma, decidua, myometrium and placenta obtained
from women undergoing Caesarian section at term and abortion at weeks
16-22 of pregnancy were determined. There was a significant increase
in oestradiol concentration (per g wet wt) both in placenta, decidua
and myometrium from mid-term to term. Both
at mid-term and term oestradiol concentrations in decidua and
myometrium were much smaller than those in the plasma (per ml).
Progesterone concentration in placenta and in myometrium did not
increase from mid-term to term where it increased significantly in
decidua. Decidual
and myometrial progesterone concentrations at mid-term were 2-3 times
higher than those in plasma, but
at term the concentrations in both these tissues were lower than in
plasma. The ratio progesterone/oestradiol
in plasma, decidua, myometrium and placenta at mid-term was 8.7,
112.2, 61.4 and 370.0,
respectively, and it decreased significantly in the myometrium and
placenta but was nearly unchanged in plasma and decidua at term. The
general conclusion to be drawn from the present study is the
lack of correspondence between the plasma concentrations and the
tissue concentrations of female sex steroids during pregnancy.
Endocrinology
1976 Nov; 99(5): 1178-81. Unconjugated
estradiol in the myometrium of pregnancy.
Batra S. By chemically digesting myometrium in a mixture of NaOH and
sodium dodecyl sulphate, estradiol could be recovered almost
completely by extraction with ethyl acetate. The concentration of
estradiol-17beta (E2) in the extracted samples could reliably be
determined by radioimmunoassay. Compared to its concentration in the
plasma, E2 in the pregnant human myometrium was very low, and as a
result, the tissue/plasma estradiol concentration ratio was less than
0.5. In the pseudopregnant rabbit, this ratio ranged between 16 and
20.
J
Steroid Biochem 1989 Jan;32(1A):35-9. Tissue
specific effects of progesterone on progesterone and estrogen
receptors in the female urogenital tract.
Batra S, Iosif CS. The effect of progesterone administration on
progesterone and estrogen receptors in the uterus, vagina and urethra
of rabbits was studied. After 24 h of
progesterone treatment the concentration of cytosolic progesterone
receptors decreased to about 25% of the control value in the uterus,
whereas no significant change in receptor concentration was observed
in the vagina or the urethra. The concentration of the nuclear
progesterone receptor did not change in any of the three tissues
studied. The apparent dissociation constant (Kd) of nuclear
progesterone receptor increased after progesterone treatment in all
three tissues. Although the Kd of the cytosolic progesterone receptor
also increased in all tissues, the difference was significant for
only the vagina and
urethra. The concentration of cytosolic estrogen receptors in the
uterus decreased significantly (P less than 0.001) after progesterone
treatment whereas the Kd value increased slightly (P less than 0.05).
In vagina or the urethra,
there was no change in either estrogen receptor concentration or Kd
values after progesterone treatment. These data clearly showed that
the reduction by progesterone of progesterone and estrogen receptor
concentrations occurs only in the uterus and not in the vagina or the
urethra.
Am
J Obstet Gynecol 1980 Apr 15;136(8):986-91. Female
sex steroid concentrations in the ampullary and isthmic regions of
the human fallopian tube and their relationship to plasma
concentrations during the menstrual cycle.
Batra S, Helm G, Owman C, Sjoberg NO, Walles B. The concentrations of
estradiol-17 beta (E2) and progesterone (P) were measured in the
ampullary and isthmic portions of the fallopian tube of nonpregnant
menstruating women and the cyclic fluctuations were related to the
concentrations of these hormones in plasma. The steroid
concentrations were determined by radioimmunoassays. There was no
significant difference in the isthmic and ampullary concentrations of
either steroid in any of the menstrual phases. The mean value for E2
was highest in the ovulatory phase and for P during the luteal phase.
The tissue (per gm)/plasma (per ml) ratio for the steroid
concentrations was above unity in all measurements. The ratio for E2
was highest (isthmus:12, ampulla:8) in the follicular phase and for P
(isthmus:26, ampulla:18) during ovulation. Since these
highest ratios were attained when plasma steroid concentrations were
relatively low they were interpreted as reflections of a maximal
receptor contribution.
Biol
Reprod 1980 Apr;22(3):430-7.
Sex steroids in plasma and reproductive tissues of the female guinea
pig.
Batra S, Sjoberg NO, Thorbert G.
J
Steroid Biochem Mol Biol 1997 Apr;61(3-6):323-39.
Steroid control and sexual differentiation of brain aromatase.
Balthazart J. “Together, these data indicate that the
removal of estrogens caused by steroidal inhibitors decreases the
synthesis of ARO,
presumably at the transcriptional level.”
Science,
Vol. 94, No. 2446 (Nov. 1941), p. 462. Diminution
in Ability of the Liver to Inactivate Estrone in Vitamin B Complex
Deficiency,
Biskind, M.S., and G. R. Biskind.
Am.
Jour. Clin. Path., Vol. 16 (1946), No. 12, pages 737-45.
The Nutritional Aspects of Certain Endocrine Disturbances,
Biskind, G. R., and M. S. Biskind.
Biol
Reprod, 1993 Oct, 49:4, 647-52.
Pathologic effect of estradiol on the hypothalamus.
Brawer JR; Beaudet A; Desjardins GC; Schipper HM. Estradiol provides
physiological signals to the brain throughout life that are
indispensable for the development and regulation of reproductive
function. In addition to its multiple physiological actions, we have
shown that estradiol is also selectively cytotoxic to beta-endorphin
neurons in the hypothalamic arcuate nucleus. The mechanism underlying
this neurotoxic action appears to involve the conversion of estradiol
to catechol estrogen and subsequent oxidation to o-semiquinone free
radicals. The estradiol-induced loss of beta-endorphin neurons
engenders a compensatory increment in mu opioid binding in the medial
preoptic area rendering this region supersensitive to residual
beta-endorphin or to other endogenous opioids. The consequent
persistent opioid inhibition results in a cascade of neuroendocrine
deficits that are ultimately expressed as a chronically attenuated
plasma LH pattern to which the ovaries respond by becoming
anovulatory and polycystic. This neurotoxic action of estradiol may
contribute to a number of reproductive disorders in humans and in
animals in which aberrant hypothalamic function is a major component.
Mech
Ageing Dev, 1991 May, 58:2-3, 207-20. Exposure
to estradiol impairs luteinizing hormone function during aging.
Collins TJ; Parkening TA Department of Anatomy and Neurosciences,
University of Texas Medical Branch, Galveston 77550. “This work
evaluated the anterior pituitary (AP) component of the H-P axis by
determining the ability of perifused AP to release LH following
sustained but pulsatile LHRH stimulation. The normal dual discharge
profile of LH was affected by age.” “The
role of estradiol (E2) in AP aging was further tested as AP from
ovariectomized (OVXed) mice, deprived of E2 since puberty, responded
as well as the mature proestrous group. In contrast, aged mice
subjected to long-term E2 exposure (cycling or OVXed plus E2
replacement) failed to produce the dual response pattern.”
“Furthermore, E2
is a major factor in altering LH function and appears to act before
middle age.”
Mech
Ageing Dev 1975 Jan-Feb;4(1):19-28. Lysosomal
enzymes and aging in vitro: subcellular enzyme distribution and
effect of hydrocortisone on cell life-span.
Cristofalo VJ, Kabakjian J. “The acid phosphatase and beta
glucuronidase activities of four subcellular fractions (nuclear,
mitochondrial-lysosomal, microsomal, supernatant) of WI-38 cells were
compared during in vitro aging. All
of the fractions showed an age-associated increase in activity.”
Endocrinology,
1992 Nov, 131:5, 2482-4.
Vitamin E protects hypothalamic beta-endorphin neurons from estradiol
neurotoxicity.
Desjardins GC; Beaudet A; Schipper HM; Brawer JR. Estradiol valerate
(EV) treatment has been shown to result in the destruction of 60% of
beta-endorphin neurons in the hypothalamic arcuate nucleus. Evidence
suggests that the mechanism of EV-induced neurotoxicity involves the
conversion of estradiol to catechol estrogen and subsequent oxidation
to free radicals in local peroxidase-positive astrocytes. In this
study, we examined whether treatment with the antioxidant, vitamin E,
protects beta-endorphin neurons from the neurotoxic action of
estradiol. Our results demonstrate that chronic vitamin E treatment
prevents the decrement in hypothalamic beta-endorphin concentrations
resulting from arcuate beta-endorphin cell loss, suggesting that the
latter is mediated by free radicals. Vitamin E treatment also
prevented the onset of persistent vaginal cornification and
polycystic ovarian condition which have been shown to result from the
EV-induced hypothalamic pathology.
Exp
Gerontol, 1995 May-Aug, 30:3-4, 253-67.
Estrogen-induced hypothalamic beta-endorphin neuron loss: a possible
model of hypothalamic aging.
Desjardins GC; Beaudet A; Meaney MJ; Brawer JR. Over the course of
normal aging, all female mammals with regular cycles display an
irreversible arrest of cyclicity at mid-life. Males, in contrast,
exhibit gametogenesis until death.
Although it is widely accepted that exposure to estradiol throughout
life contributes to reproductive aging, a unified hypothesis of the
role of estradiol in reproductive senescence has yet to emerge.
Recent evidence derived from a rodent model of chronic
estradiol-mediated accelerated reproductive senescence now suggests
such a hypothesis. It has been shown that chronic estradiol exposure
results in the destruction
of greater than 60% of all beta-endorphin neurons in the arcuate
nucleus while
leaving other neuronal populations spared. This loss of opioid
neurons is prevented by treatment with antioxidants indicating that
it results from estradiol-induced
formation of free radicals. Furthermore, we have shown that this
beta-endorphin cell loss is followed by a compensatory upregulation
of mu opioid receptors in the vicinity of LHRH cell bodies.
The increment in mu opioid receptors presumably renders the opioid
target cells supersensitive to either residual beta-endorphin or
other endogenous mu ligands, such as met-enkephalin, thus resulting
in chronic opioid suppression
of the pattern of LHRH release, and subsequently that of LH.
Indeed, prevention of the neuroendocrine effects of estradiol by
antioxidant treatment also prevents
the cascade of neuroendocrine aberrations resulting in anovulatory
acyclicity.
The loss of beta-endorphin neurons along with the paradoxical opioid
supersensitivity which ensues, provides a unifying framework in which
to interpret the diverse features that characterize the
reproductively senescent female.
Geburtshilfe
Frauenheilkd 1994 Jun; 54(6):321-31.
Hormonprofile bei hochbetagten Frauen und potentielle
Einflussfaktoren.
Eggert-Kruse W; Kruse W; Rohr G; Muller S; Kreissler-Haag D; Klinga
K; Runnebaum B. [Hormone
profile of elderly women and potential modifiers]. Eggert-Kruse
W, Kruse W, Rohr G, Muller S, Kreissler-Haag D, Klinga K, Runnebaum
B. “In 136 women with a median age of 78 (60-98) years the serum
concentrations of FSH, LH, prolactin, estradiol-17 beta, testosterone
and DHEA-S were determined completed by GnRH and ACTH stimulation
tests in a subgroup. This resulted in median values for FSH of 15.8
ng/ml, LH 6.4 ng/ml, prolactin 6.9 ng/ml, estradiol 16 pg/ml,
testosterone 270 pg/ml and 306 ng/ml for DHEA-S. No
correlation with age in this population was found for gonadotropins
as well as the other hormones for an age level of up to 98 years.”
Acta
Physiol Hung 1985;65(4):473-8. Peripheral
blood concentrations of progesterone and oestradiol during human
pregnancy and delivery.
Kauppila A, Jarvinen PA To evaluate the significance of progesterone
and estradiol in human uterine activity during pregnancy and delivery
the blood concentrations of these hormones were monitored weekly
during the last trimester of pregnancy and at the onset of labour in
15 women, and before and 3 hours after the induction of term delivery
in 83 parturients. Neither plasma concentrations of progesterone or
estradiol nor the ratio of progesterone to estradiol changed
significantly during the last trimester of pregnancy or at the onset
of delivery. After the
induction of delivery parturients with initial progesterone dominance
(ratio of progesterone to estradiol higher than 5 before induction)
demonstrated a significant fall in serum concentration of
progesterone and in the ratio of progesterone to estradiol while
estradiol concentration rose significantly. In estrogen dominant
women (progesterone to estradiol ratio equal to or lower than 5) the
serum concentration of progesterone and the ratio of progesterone to
estradiol rose significantly during the 3 hours after the induction
of delivery. Our results suggest that the peripheral blood levels of
progesterone and estradiol do not correlate with the tissue
biochemical changes which prepare the uterine cervix and myometrium
for delivery. The observation that the ratio of progesterone to
estradiol decreased in progesterone-dominant and increased in
estrogen-dominant women stresses the importance of a well balanced
equilibrium of these hormones for prostaglandin metabolism during
human delivery.
Am
J Obstet Gynecol 1984 Nov 1;150(5 Pt 1):501-5. Estrogen
and progesterone receptor and hormone levels in human myometrium and
placenta in term pregnancy.
Khan-Dawood FS, Dawood MY. Estradiol and progesterone receptors in
the myometrium, decidua, placenta, chorion, and amnion of eight women
who underwent elective cesarean section at term were determined by
means of an exchange assay. The hormone levels in the peripheral
plasma and cytosol of these tissues were measured by
radioimmunoassays. Maternal plasma and the placenta had high
concentrations of estradiol and progesterone, with the placenta
having 12 times more progesterone
than in maternal plasma but only half the concentrations of estradiol
in
maternal plasma. The decidua and placenta had detectable levels of
cytosol and nuclear estradiol receptors, but the myometrium had no
measurable cytosol estradiol receptors, whereas
the chorion and amnion had neither cytosol nor nuclear estradiol
receptors. However, the chorion and amnion had significantly higher
concentrations of estradiol
in the cytosol than those in the decidua and myometrium. Only the
decidua and myometrium had cytosol and nuclear progesterone
receptors, but the placenta, amnion, and chorion had neither cytosol
nor nuclear progesterone receptors. In contrast, progesterone hormone
levels were significantly higher in the placenta, amnion, and chorion
than in the decidua and myometrium. The findings indicate that, in
the term pregnant uterus, (1) the placenta, amnion, and chorion are
rich in progesterone, estradiol, and nuclear estradiol receptors but
have no progesterone receptors, (2) the decidua and myometrium have
nuclear estradiol and progesterone receptors, and (3) the
myometrium has a higher progesterone/estradiol ratio than that of the
peripheral plasma, thus suggesting a highly progesterone-dominated
uterus.
Biochem
Biophys Res Commun 1982 Jan 29;104(2):570-6. Progesterone-induced
inactivation of nuclear estrogen receptor in the hamster uterus is
mediated by acid phosphatase.
MacDonald RG, Okulicz WC, Leavitt, W.W.
Steroids
1982 Oct;40(4):465-73. Progesterone-induced
estrogen receptor-regulatory factor is not 17 beta-hydroxysteroid
dehydrogenase.
MacDonald RG, Gianferrari EA, Leavitt WW These studies were done to
determine if the progesterone-induced estrogen receptor-regulatory
factor (ReRF) in hamster uterus is 17 beta-hydroxysteroid
dehydrogenase (17 beta-HSD), i.e. that rapid loss of nuclear estrogen
receptor (Re) might be due to enhanced estradiol oxidation to estrone
catalyzed by 17 beta-HSD. Treatment of proestrous hamsters with
progesterone (approximately 25 mg/kg BW) for either 2 h or 4 h had no
effect on 17 beta-HSD activity measured as the rate of conversion of
[6,7-3H]estradiol to [3H]estrone by whole uterine homogenates at 35
degrees C. During this same time interval, progesterone treatment
increased the rate of inactivation of the occupied form of nuclear Re
as determined during a 30 min incubation of uterine nuclear extract
in vitro at 36 degrees C. Since we previously demonstrated that such
in vitro Re-inactivating activity represents ReRF, the present
studies show that ReRF is not 17 beta-HSD or a modifier of that
enzyme.
Am
J Obstet Gynecol 1987 Aug; 157(2):312-317. Age-related
changes in the female hormonal environment during reproductive life.
Musey VC, Collins DC, Musey PI, Martino-Saltzman D, Preedy JR
Previous studies have indicated that serum levels of
follicle-stimulating hormone rise with age during the female
reproductive life, but the effect on other hormones is not clear. We
studied the effects of age, independent of pregnancy, by comparing
serum hormone levels in two groups of nulliparous, premenopausal
women aged 18 to 23 and 29 to 40 years. We found that increased age
during reproductive life is accompanied by a significant rise in both
basal and stimulated serum follicle-stimulating hormone levels. This
was accompanied by an increase in the serum level of estradiol-17
beta and the urine levels
of estradiol-17 beta and 17 beta-estradiol-17-glucosiduronate. The
serum level of estrone sulfate decreased with age. Serum and urine
levels of other estrogens were unchanged. The basal and stimulated
levels of luteinizing hormone were also unchanged. There was a
significant decrease in basal and stimulated serum prolactin levels.
Serum levels of dehydroepiandrosterone and dehydroepiandrosterone
sulfate decreased with age, but serum testosterone was unchanged. It
is concluded that significant age-related changes in the female
hormonal environment occur during the reproductive years.
Endocrinology
1981 Dec;109(6):2273-5. Progesterone-induced
estrogen receptor-regulatory factor in hamster uterine nuclei:
preliminary characterization in a cell-free system.
Okulicz WC, MacDonald RG, Leavitt WW.
“In vitro studies have demonstrated a progesterone-induced activity
associated with the uterine nuclear fraction which resulted in the
loss of nuclear estrogen receptor.”
“This progesterone-dependent stimulation of estrogen receptor loss
was absent when nuclear extract was prepared in phosphate buffer
rather than Tris buffer. In addition, sodium molybdate and sodium
metavanadate (both at 10 mM) inhibited this activity in nuclear
extract. These observations support the hypothesis that progesterone
modulation of estrogen action may be accomplished by induction (or
activation) of an estrogen receptor-regulatory factor (Re-RF), and
this factor may in turn act
to eliminate the occupied form of estrogen receptor from the nucleus,
perhaps through a hypothetical dephosphorylation-inactivation
mechanism.”
American
Journal of Human Biology, v.8, n.6, (1996): 751-759. Ovarian
function in the latter half of the reproductive lifespan. O'Rourke,
M T; Lipson, S F; Ellison, P T. “Thus, ovarian endocrine function
over the course of reproductive life represents a process of change,
but not one of generalized functional decline.”
J
Gerontol, 1978 Mar, 33:2, 191-6.
Circulating plasma levels of pregnenolone, progesterone, estrogen,
luteinizing hormone, and follicle stimulating hormone in young and
aged C57BL/6 mice during various stages of pregnancy.
Parkening TA; Lau IF; Saksena SK; Chang MC Young (3-5 mo of age) and
senescent (12-15 mo of age) multiparous C57BL/6 mice were mated with
young males (3-6 mo of age) and the numbers of preimplantation
embryos and implantation sites determined on days 1 (day of plug), 4,
9, and 16 of pregnancy. The numbers of viable embryos were
significantly lower (p less than 0.02 to p less than 0.001) in
senescent females compared with young females on all days except day
1 of pregnancy. Plasma samples tested by radioimmunoassay indicated
circulating estradiol-17B was significantly lower (P less than 0.05)
on day 1 and higher
(p less than 0.05) on day 4 in
older females, whereas FSH was higher on days 4, 9, and 16 (p less
than 0.02 to p less than 0.001) in senescent females when compared
with samples from young females. Levels of pregnenolone,
progesterone, estrone, and LH were not significantly different at any
stage of pregnancy in the two age groups. From the hormonal data it
did not appear that degenerating corpora lutea were responsible for
the declining litter size in this strain of aged mouse.
Biol
Reprod, 1985 Jun, 32:5, 989-97. Orthotopic
ovarian transplantations in young and aged C57BL/6J mice.
Parkening TA; Collins TJ; Elder FF. “Orthotopic ovarian
transplantations were done between young (6-wk-old) and aged
(17-mo-old) C57BL/6J mice. The percentages of mice mating following
surgery from the four possible ovarian transfer combinations were as
follows: young into young, 83%; young
into aged, 46%;
aged into young, 83%; and aged into aged, 36%.” “The
only statistical differences found between the transfer groups
occurred in FSH concentrations. Plasma FSH was markedly elevated (P
less than 0.005) in young recipients with ovaries transplanted from
aged donors, in comparison to young recipients with ovaries from
young donors. These
data indicate that the aging ovary and uterus play a secondary role
in reproductive
failure and that the aging hypothalamic-hypophyseal complex is
primarily responsible for the loss of fecundity in older female
C57BL/6J mice.”
J
Endocrinol, 1978 Jul, 78:1, 147-8. Postovulatory
levels of progestogens, oestrogens, luteinizing hormone and
follicle-stimulating hormone in the plasma of aged golden hamsters
exhibiting a delay in fertilization.
Parkening TA; Saksena SK; Lau IF.
Biology
of Reproduction, v.49, n.2, (1993): 387-392. Controlled
neonatal exposure to estrogens: A suitable tool for reproductive
aging studies in the female rat.
Rodriguez, P; Fernandez-Galaz, C; Tejero, A. “The present study was
designed to determine whether the modification of exposure time to
large doses of estrogens provided a reliable model for early changes
in reproductive aging.” “Premature occurrence of vaginal opening
was observed in all three estrogenized groups independently of EB
exposure. However, females bearing implants for 24 h had first estrus
at the same age as their controls and cycled regularly, and neither
histological nor gonadal alterations could be observed at 75 days.
Interestingly, they failed to cycle regularly at 5 mo whereas
controls continued to cycle.” “On the other hand, the increase of
EB exposure (Ei5, EI) resulted in a gradual and significant delay in
the onset of first estrus and in a high number of estrous phases, as
frequently observed during reproductive decline. At 75 days, the
ovaries of these last two groups showed a reduced number of corpora
lutea and an
increased number of large follicles.
According to this histological pattern, ovarian weight and
progesterone (P) content gradually decreased whereas both groups
showed higher estradiol (E-2) content than controls. This resulted in
a
higher E-2:P ratio, comparable to that observed in normal aging rats.
The
results allow us to conclude that the exposure time to large doses of
estrogens is critical to the gradual enhancement of reproductive
decline. Furthermore, exposures as brief as 24 h led to a potential
early model for aging studies that will be useful to verify whether
neuroendocrine changes precede gonadal impairment.”
J
Clin Endocrinol Metab 1996 Apr;81(4):1495-501. Characterization
of reproductive hormonal dynamics in the perimenopause.
Santoro N, Brown JR, Adel T, Skurnick JH. “Overall
mean estrone conjugate excretion was
greater
in the perimenopausal women compared to that in the younger women
[76.9 ng/mg Cr (range, 13.1-135) vs. 40.7 ng/mg Cr (range,
22.8-60.3); P = 0.023]
and
was similarly elevated in both follicular and luteal phases.
Luteal
phase pregnanediol excretion was diminished in the perimenopausal
women
compared to that in younger normal subjects (range for integrated
pregnanediol,
1.0-8.4 vs. 1.6-12.7 microg/mg
Cr/luteal phase; P = 0.015).” “We
conclude that altered ovarian function in the perimenopause can be
observed as early as age 43 yr and include hyperestrogenism,
hypergonadotropism, and decreased luteal phase progesterone
excretion. These hormonal alterations may well be responsible for the
increased gynecological morbidity that characterizes this period of
life.”
Brain
Res, 1994 Jul 25, 652:1, 161-3.
The 21-aminosteroid antioxidant, U74389F, prevents estradiol-induced
depletion of hypothalamic beta-endorphin in adult female rats.
Schipper HM; Desjardins GC; Beaudet A; Brawer JR.
“A single intramuscular injection of 2 mg estradiol valerate (EV)
results in neuronal degeneration and beta-endorphin depletion in the
hypothalamic arcuate nucleus of adult female rats.” “The present
findings support the hypothesis that the toxic effect of estradiol on
hypothalamic beta-endorphin neurons is mediated by free radicals.”
Clin
Exp Obstet Gynecol 2000;27(1):54-6. Hormonal
reproductive status of women at menopausal transition compared to
that observed in a group of midreproductive-aged women.
Sengos C, Iatrakis G, Andreakos C, Xygakis A, Papapetrou P.
CONCLUSION:
The reproductive hormonal patterns in
perimenopausal
women favor a relatively hypergonadotropic hyper-estrogenic milieu.
Endocr
Relat Cancer 1999 Jun;6(2):307-14.
Aromatase overexpression and breast hyperplasia, an in vivo
model--continued overexpression of aromatase is sufficient to
maintain hyperplasia without circulating estrogens, and aromatase
inhibitors abrogate these preneoplastic changes in mammary glands.
Tekmal RR, Kirma N, Gill K, Fowler K “To test directly the role of
breast-tissue estrogen in initiation of breast cancer, we have
developed the aromatase-transgenic mouse model and demonstrated for
the first time that increased mammary estrogens resulting from the
overexpression of aromatase in mammary glands lead to the induction
of various preneoplastic and neoplastic changes that are similar to
early breast cancer.” “Our current studies show aromatase
overexpression is sufficient to induce and maintain early
preneoplastic and neoplastic changes in female mice without
circulating ovarian estrogen. Preneoplastic and neoplastic changes
induced in mammary glands as a result of aromatase overexpression can
be completely abrogated with the administration of the aromatase
inhibitor, letrozole. Consistent with complete reduction in
hyperplasia,
we have also seen downregulation of estrogen receptor and a decrease
in cell proliferation
markers, suggesting aromatase-induced hyperplasia can be treated with
aromatase inhibitors. Our studies demonstrate that aromatase
overexpression alone, without circulating estrogen, is responsible
for the induction of breast hyperplasia and these changes can be
abrogated using aromatase inhibitors.”
J
Steroid Biochem Mol Biol 2000 Jun;73(3-4):141-5. Elevated
steroid sulfatase expression in breast cancers.
Utsumi T, Yoshimura N, Takeuchi S, Maruta M, Maeda K, Harada N. In
situ estrogen synthesis makes an important contribution to the high
estrogen concentration found in breast cancer tissues. Steroid
sulfatase which hydrolyzes several sulfated steroids such as estrone
sulfate, dehydroepiandrosterone sulfate, and cholesterol sulfate may
be involved. In the present study, we therefore, assessed steroid
sulfatase mRNA levels in breast malignancies and background tissues
from 38 patients by reverse transcription and polymerase chain
reaction. The levels in breast cancer tissues were significantly
increased at 1458.4+/-2119.7 attomoles/mg RNA (mean +/- SD) as
compared with 535.6+/-663.4 attomoles/mg RNA for non-malignant
tissues (P<0.001). Thus, increased steroid sulfatase expression
may be partly responsible for local overproduction of estrogen and
provide a growth advantage for tumor cells.
Ann
N Y Acad Sci 1986;464:106-16. Uptake
and concentration of steroid hormones in mammary tissues.
Thijssen JH, van Landeghem AA, Poortman J In order to exert their
biological effects, steroid hormones must enter the cells of target
tissues and after binding to specific receptor molecules must remain
for a prolonged period of time in the nucleus. Therefore the
endogenous levels and the subcellular distribution of estradiol,
estrone, DHEAS, DHEA ad 5-Adiol were measured in normal breast
tissues and in malignant and nonmalignant breast tumors from pre- and
postmenopausal women. For estradiol the highest tissue levels were
found in the malignant samples.
No differences were seen in these levels between pre- and
postmenopausal women despite the largely different peripheral blood
levels.
For estrone no differences were found between the tissues studied.
Although the estradiol concentration was higher in the
estradiol-receptor-positive than in the receptor-negative tumors, no
correlation was calculated between the estradiol and the receptor
consent. Striking differences were seen between the breast and
uterine tissues for the total tissue concentration of estradiol, the
ratio between estradiol and estrone, and the subcellular distribution
of both estrogens. At
similar receptor concentrations in the tissues these differences
cannot easily be explained.
Regarding the androgens, the tissue/plasma gradient was higher for
DHEA than for 5-Adiol, and for DHEAS there was very probably a much
lower tissue gradient. The highly significant correlation between the
androgens suggests an intracellular metabolism of DHEAS to DHEA and
5-Adiol. Lower
concentrations of DHEAS and DHEA were observed in the malignant
tissues compared with the normal ones and the benign lesions.
For 5-Adiol no differences were found and therefore these data do not
support our original hypothesis on the role of this androgen in the
etiology of breast abnormalities. Hence the way in which adrenal
androgens express their influence on the breast cells remains
unclear.
Clin
Endocrinol (Oxf) 1978 Jul;9(1):59-66. Sex
hormone concentrations in post-menopausal women.
Vermeulen A, Verdonck L. “Plasma sex hormone concentrations
(testosterone, (T), androstenedione (A), oestrone (E1) and oestradiol
(E2) were measured in forty post-menopausal women more than 4 years
post-normal menopause.” “Sex
hormone concentrations in this group of postmenopausal women (greater
than 4YPM) did not show any variation as a function of age,
with the possible exception of E2 which showed a tendency to decrease
in the late post-menopause. E1 and to a lesser extent E2 as well as
the E1/A ratio were significantly corelated with degree of obesity or
fat mass, suggesting a possible role of fat tissue in the
aromatization of androgens. Neither the T/A nor the E2/E1 ratios were
correlated with fat mass, suggesting that the reduction of 17
oxo-group does not occur in fat tissue. The E1/A ratio was
significantly higher than the reported conversion rate of A in E1.”
J
Steroid Biochem 1984 Nov;21(5):607-12. The
endogenous concentration of estradiol and estrone in normal human
postmenopausal endometrium.
Vermeulen-Meiners C, Jaszmann LJ, Haspels AA, Poortman J, Thijssen JH
The endogenous estrone (E1) and estradiol (E2) levels (pg/g tissue)
were measured in 54 postmenopausal, atrophic endometria and compared
with the E1 and E2 levels in plasma (pg/ml). The results from the
tissue levels of both steroids
showed large variations and there was no significant correlation with
their plasma levels. The mean E2 concentration in tissue was 420
pg/g, 50 times higher than in plasma and the E1 concentration of 270
pg/g was 9 times higher. The
E2/E1 ratio in tissue of 1.6, was higher than the corresponding E2/E1
ratio in plasma, being 0.3. We
conclude that normal postmenopausal atrophic endometria contain
relatively high concentrations of estradiol and somewhat lower
estrone levels.
These tissue levels do not lead to histological effects.
J
Clin Endocrinol Metab 1998 Dec; 83(12):4474-80. Deficient
17beta-hydroxysteroid dehydrogenase type 2 expression in
endometriosis: failure to metabolize 17beta-estradiol.
Zeitoun K, Takayama K, Sasano H, Suzuki T, Moghrabi N, Andersson S,
Johns A, Meng L, Putman M, Carr B, Bulun SE.
“Aberrant
aromatase expression in stromal cells of endometriosis gives rise to
conversion of circulating androstenedione to estrone in this tissue,
whereas aromatase expression is absent in the eutopic endometrium. In
this study, we initially demonstrated by Northern blotting
transcripts of the reductive 17beta-hydroxysteroid dehydrogenase
(17betaHSD) type 1, which catalyzes the conversion of estrone to
17beta-estradiol, in both eutopic endometrium and endometriosis.
Thus,
it follows that the product of the aromatase reaction, namely
estrone, that is weakly estrogenic can be converted to the potent
estrogen, 17beta-estradiol, in endometriotic tissues. It was
previously
demonstrated
that progesterone stimulates the inactivation of 17beta-estradiol
through conversion to estrone in eutopic endometrial epithelial
cells.” “In
conclusion, inactivation of 17beta-estradiol is impaired in
endometriotic tissues due to deficient expression of 17betaHSD-2,
which is normally expressed in eutopic endometrium in response to
progesterone.”
Biochem
Biophys Res Commun 1999 Aug 2;261(2):499-503. Piceatannol,
a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity
by targeting the F1 complex.
Zheng J, Ramirez VD.
Eur
J Pharmacol 1999 Feb 26;368(1):95-102.
Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase
activity by estrogens: comparison with Na+, K+ -ATPase of porcine
cortex. Zheng J, Ramirez VD.
“The data indicate that the ubiquitous mitochondrial F0F1-ATPase is
a specific target site for estradiol and related estrogenic
compounds; however, under this in vitro condition, the effect seems
to require pharmacological concentrations.”
J
Steroid Biochem Mol Biol 1999 Jan;68(1-2):65-75. Purification
and identification of an estrogen binding protein from rat brain:
oligomycin sensitivity-conferring protein (OSCP), a subunit of
mitochondrial F0F1-ATP synthase/ATPase.
Zheng J, Ramirez VD. “This finding opens up the possibility that
estradiol, and probably other compounds with
similar structures, in addition to their classical genomic mechanism,
may interact with ATP synthase/ATPase by binding to OSCP, and thereby
modulating cellular energy metabolism.”
©
Ray Peat 2006. All Rights Reserved. www.RayPeat.com
Comentarios
Publicar un comentario